This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

HYPOXANTHINE COMPLEXES WITH FIRST ROW TRANSITION METAL PERCHLORATES

Chester M. Mikulski^a; Matthew K. Kurlan^a; Monica L. Bayne^a; Michele Gaul^a; Nicholas M. Karayannis^b ^a Department of Chemistry and Physics, Beaver College, Glenside, PA, U.S.A. ^b Amoco Chemical Company, Naperville, IL, U.S.A.

To cite this Article Mikulski, Chester M., Kurlan, Matthew K., Bayne, Monica L., Gaul, Michele and Karayannis, Nicholas M.(1988) 'HYPOXANTHINE COMPLEXES WITH FIRST ROW TRANSITION METAL PERCHLORATES', Journal of Coordination Chemistry, 18: 4, 297 — 305 **To link to this Article: DOI:** 10.1080/00958978808080970

URL: http://dx.doi.org/10.1080/00958978808080970

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

HYPOXANTHINE COMPLEXES WITH FIRST ROW TRANSITION METAL PERCHLORATES⁺

CHESTER M. MIKULSKI, MATTHEW K. KURLAN, MONICA L. BAYNE, MICHELE GAUL

Department of Chemistry and Physics, Beaver College, Glenside, PA 19038, U.S.A.

NICHOLAS M. KARAYANNIS*

Amoco Chemical Company, P.O. Box 400, Naperville, IL 60566, U.S.A.

(Received March 23, 1988)

Complexes of hypoxanthine (hxH) with 3d metal perchlorates were synthesized by refluxing mixtures of ligand and metal salt in ethyl acetate-triethyl orthoformate. In all cases investigated, partial substitution of one anionic hx⁻ for one ClO_4^- group occurred. The solid complexes isolated contain also two or three neutral hxH ligands per metal ion, *viz* $M(hx)(hxH)_3(ClO_4)_2$ (M = Cr, Fe), $M(hx)(hxH)_3ClO_4 \cdot H_2O$ (M = Mn, Cu, Zn), $Co(hx)(hxH)_3ClO_4$ and $M(hx)(hxH)_2ClO_4 \cdot H_2O$ (M = Fe, Ni). The new complexes appear to be generally polymeric species characterized by a single-bridged $\{-M-hx+_x \text{ backbone, in which bidentate hx^- probably binds via N3 and N7 to adjacent metal ions. The neutral hxH ligands are terminal N7-bound. The Co(II) complex is pentacoordinated with three terminal hxH ligands and the following additional ligands; M = Fe²⁺, Ni²⁺: -OClO₃, aqua; M = Cr³⁺, Fe³⁺: -OClO₃ (also ionic <math>ClO_4^-$); M = Mn²⁺, Cu²⁺, Zn²⁺: aqua (ClO₄⁻ is ionic).

Keywords: hypoxanthine, complex, synthesis, perchlorato ligand, polymers

INTRODUCTION

Hypoxanthine (hxH; 6-oxopurine; I), a constituent of inosine in RNA,² is a ligand of significant biological interest, both as such and as a simpler analogue of guanine (guH; 2-amino-6-oxopurine).³ HxH and xanthine (xnH; 2,6-dioxopurine) are intermediates in the reduction of nucleic acids to uric acid in man, catalyzed by the Moand Fe-containing enzyme xanthine oxidase. Mo(VI) complexes with xnH or hxH apparently contribute to the mechanism of action of this enzyme.⁴ In view of this, the coordination chemistry of hxH and xnH acquires medical interest in connection with disease resulting from disturbances in purine metabolism, such as xanthinuria and gout.⁵ Weiss *et al.*⁶ isolated the first metal complexes with hxH and determined that the stability constants of Cu(II) complexes with various purines decrease along the series adenine (adH) > purine (puH) > hxH > 7-methyl-hypoxanthine > 9-methyl-hypoxanthine > xnH.⁷ The crystal structure determination of the dimeric complex [Cu₂(hxH)₄Cl₂]Cl₂·6H₂O revealed the presence of quadruple bridges of N3,N9-bound hxH between the two Cu²⁺ ions.⁸ Cu(hxH)SO₄·2H₂O was also recently found to contain bidentate bridging N3,N9-bound hxH.⁹ Other recent crystal structure determinations by Dubler *et al.*, within the framework of their studies on metal

⁺ Presented in part at the XXV ICCC; see ref. 1. * Author for correspondence.

complexes with hxH, xnH and uric acid,¹⁰ established a new type of binding for bidentate bridging hxH in the square pyramidal polymeric species Cu(hxH)SO₄· H₂O; this compound is characterized by infinite -(Cu-hxH)-x chains, involving N3,N7-bound hxH protonated at N1 and N9, and terminal $-OSO_3$ and aqua ligands.¹¹ Terminal N7-bound hxH is present in Co(hxH)SO₄·5H₂O,¹¹ Ni(hxH)-SO₄·5H₂O¹² and Ru(hxH)(NH₃)₅Cl₃·3H₂O.¹³ Previous work in these laboratories on the metal complexes of various purines, including xnH^{14,15} and hxH, has resulted in the isolation and characterization of a few hypoxanthine complexes, namely Pd(hx)(hxH)Cl, Pt(hx)(hxH)Cl₃.¹⁶ ZrO(hx)(hxH)₂Cl·H₂O¹⁷ and Cu(hx)ClO₄·4Et OH.¹⁴ The latter Cu²⁺ complex was precipitated by refluxing mixtures of hxH and Cu(ClO₄)₂ in ethanol-triethyl orthoformate (teof).¹⁴ More recently, we attempted the syntheses of hxH complexes with other 3d metal perchlorates (M = Cr³⁺, Mn²⁺, Fe²⁺, Fe³⁺, Co²⁺, Ni²⁺, Zn²⁺) from EtOH-teof 7:3 (v/v), but either obtained precipitates in very low yields or failed to produce any solid precipitate. We subsequently developed an improved synthetic method using ethyl acetate (ea)-teof as the interaction medium.¹⁸ By employing this method, which has been successful in producing metal perchlorate complexes with xnH,¹⁵ theophylline (tpH)¹⁹ and theobromine (tbH)²⁰ in high yields, we were also able to prepare new 3d metal perchlorate complexes with hypoxanthine in 60–100% yields. These complexes are dealt with in the present paper.

EXPERIMENTAL

The synthetic procedure was similar to that previously used for the preparation of metal perchlorate complexes with other substituted purines, ^{15,19,20} *i.e.*, 1.25 mmol of hydrated metal perchlorate was dissolved in a mixture of 35 cm³ of ea and 15 cm³ of teof, 2.5 (for M^{2+}) or 3.75 (for M^{3+}) mmol hxH were added, and the resultant mixture was refluxed for 6 h or until no further significant change in appearance was noted. After cooling to room temperature, 15–20 cm³ anhydrous diethyl ether was added to the mixture and the volume was then reduced at low heat to *ca* 20 cm³. The precipitated solid was separated by filtration, washed with 30 cm³ diethyl ether and stored *in vacuo* over anhydrous CaSO₄. As was the case with the corresponding xnH complexes, ¹⁵ the new hxH complexes involve high ligand to metal ion ratios (4:1 or 3:1), being of the following types (analytical data given in Table I): $M(hx)(hxH)_3(ClO_4)_2$ (M = Cr, Fe), $M(hx)(hxH)_3ClO_4 \cdot H_2O$ (M = Mn, Cu, Zn), $M(hx)(hxH)_2ClO_4 \cdot H_2O$ (M = Fe, Ni) and Co(hx)(hxH)_3ClO₄. It is noteworthy that in all cases investigated, substitution of one anionic hx⁻ ligand for one ClO₄⁻ group

HYPOXANTHINE COMPLEXES

Complex	Colour	Yield%	C%	Н%	N%	Μ%	Cl%
$Cr(hx)(hxH)_3(ClO_4)_2$	Lavender-grey	100	30.73 (30.24)	2.23 (1.90)	28.26 (28.21)	6.12 (6.55)	8.55 (8.93)
$Mn(hx)(hxH)_3ClO_4 H_2O$	Tan	61	33.81 (33.56)	2.57 (2.39)	30.98 (31.31)	7.75 (7.67)	5.18 (4.95)
$Fe(hx)(hxH)_2ClO_4 \cdot H_2O$	Mustard yellow	71	30.77 (31.03)	2.08 (2.26)	29.21 (28.95)	9.40 (9.62)	5.96 (6.11)
$Fe(hx)(hxH)_3(ClO_4)_2$	Cocoa brown	100	29.76 (30.10)	2.03 (1.89)	27.82 (28.08)	6.64 (7.00)	9.15 (8.88)
Co(hx)(hxH) ₃ ClO ₄	Purple ^b	81	34.47 (34.23)	2.38 (2.15)	32.22 (31.93)	8.42 (8.40)	5.18 (5.05)
Ni(hx)(hxH) ₂ ClO ₄ ·H ₂ O	Light green	100	31.14 (30.88)	2.27 (2.25)	29.11 (28.80)	9.78 (10.06)	6.24 (6.08)
Cu(hx)(hxH) ₃ ClO ₄ ·H ₂ O	Blue-green	95	33.08 (33.16)	2.45 (2.37)	31.09 (30.93)	8.84 (8.77)	4.60 (4.89)
$Zn(hx)(hxH)_3ClO_4 \cdot H_2O$	White	66	32.69 (33.08)	2.50 (2.36)	30.43 (30.86)	8.63 (9.00)	4.73 (4.88)

TABLE I Analytical data for the new hypoxanthine metal complexes.^a

^a Found % with Calc. % in parentheses. ^b Moisture-sensitive tacky solid. The rest of the new complexes were obtained as free-flowing powders, stable in the presence of atmospheric moisture.

occurred. The new complexes are generally insoluble in organic media. IR spectra of hxH and the new complexes (Table II) were recorded in KBr discs $(4000-500 \text{ cm}^{-1})$ and Nujol mulls between NaCl $(4000-500 \text{ cm}^{-1})$ and high density polyethylene $(700-200 \text{ cm}^{-1})$ windows using a Perkin-Elmer 683 spectrophotometer. Solid-state (Nujol mull) electronic spectra and magnetic susceptibility measurements (300° K) (Table III) were obtained by methods described elsewhere.²¹

RESULTS AND DISCUSSION

Infrared Evidence

IR spectral data for the hxH free base^{22,23} and several of its metal complexes^{11,14,16,17,24-26} have appeared in the literature. Band assignments for free hxH were made on the basis of some of our previous studies^{16,17}, in combination with the corresponding assignments for inosine 5'-monophosphate,²⁷ xnH²⁸ and guH.²⁹ The new metal complexes invariably exhibit the v_{CH} + v_{NH} bands of the free ligand virtually unchanged (Table II), as expected, since both hxH and hx⁻ contain protonated ring nitrogens. The v_{C=0} mode of free hxH undergoes small shifts toward higher wavenumbers upon 3d metal perchlorate complex formation indicating that the C=O oxygen of the ligand is not involved in coordinative bonding interactions with the metal ions.^{11,14,16,17,24-29} On the other hand, several of the v_{C=C}, v_{C=N} and ring vibrations of free hxH appear significantly shifted and occasionally split in the spectra of the new complexes. This is suggestive of coordination of the ligands

hxH ^a	$M = Cr^{3+}$	$M = Mn^{2+1}$	$M = Fe^{2+t}$	$M = Fe^{3+}$	$M + Co^{2+}$	$M = Ni^{2+}$	$M = Cu^{2+}$	$M = Zn^{2+1}$	Band Assignment
3140m 3050m	3130m 3045m	3380m,b 3130m 3050m	3400m,b 3135m 3040m	313.0m 203.5m	3135m 3035m	3410m,b 3135m 3040m	3390m,b 3140m 3045m	3380m,b 3135m 3040m)	v _{oH} (aqua)
2960s,2920s 2870s	2980ms,2940 ms,2870m,b	2975ms,2930 ms,2880m,b	2970ms,2925 ms,2875m,b	2970ms,2935 ms,2865m,b	2980ms,2940 ms,2875m,b	2970m,2935 ms,2875m,b	2960m,2935 ms,2870m,b	2960m,2940m 2880m,b	
1665vs	1674vs	1667vs	1669vs	1672vs	1669vs	1667vs	1670vs	1670vs	V _{C=0}
1605w,1579m	1622m,1584m 1550mw,b	1638ms,sh, 1618m,sh, 1578m,1560m	1640ms,sh, 1620m,1600m 1580m,1555m	1620m,1581m 1555mw,b	1618m,1576m 1547mw,b	1635ms,sh, 1622m,1600m 1580m,1577m	1637ms,sh, 1616m,sh 1582s,1565m	1635ms,sh, 1620m,sh 1580s,1568w	$\begin{cases} \delta_{H \text{ o-}H} + v_{C=C} \\ v_{C=N} + \delta_{NH} \end{cases}$
1510w,1455s 1419m,1377m	1511w,1470w 1423m,1400w	1515w,1466m 1459w,1420m	1512w,1465w, b,1418w,	1510w,1472 w,b,1420m	1509w,1470 w,b,1424m	1517w,1465w 1450w,1420w	1510w,1469 mw,1422m	1507w,1468 mw,1420m	Ring vibra.
1360m,1341m 1268m,1205m	1370w,1352w 1278w,1250	1390w,1362m 1347m,1270m	1397w,1368w 1349w,1270w	1395w,1367w 1349w,1273w	1396w,1370w 1346w,1271m	1395mw,1372 w,1335w	1407w,1365m 1346m,1272w	1406w,1367m (1349m,1271w ($\sum_{i=1}^{1} \frac{1}{i}$
1141m,1123m	vw,1219ms	1250w,1210s	1211ms,	1214mw,	1250w,1213s	1270vw,b	1208s,1151m	1211s,1150m	HNO +
	1149S,SN	1192m,1140m, sh,1125s,sh	Smccll	1144S,SN	1142m,sn 1126s,sh	1205m 1130ms,sh	11.58ms	11.50ms	
	1140vs,1105 vs,1086vs	1093vvs,b	1094vvs, 1076vvs	1137vs,1102 vvs,1077vvs	1090vvs,b	1097vvs, 1082vvs	1095vvs,b	1098vvs,b	v ₃ (ClO ₄)
955m,895w,	1038w,969w	1040w,sh	1039w,sh	1040w,sh	1035w,sh	1040w,sh	1035w,sh	1030w,sh	
sn,880m, 779w,630m,	940vw,890mw 850vw,795vw	902,9045 890s,850w	901w,900w 890mw,855vw	902w,938vw 902w,889w	902ms,942vw 908w,890w	960w,900mw 881mw,850vw	9/05,945vw 902ms,890s	905m,890s	Ring vibra-
sh,580m,sh	572w,567w	789m,690w,b 640mw,564m	788w,690w 610m,564mw	854w,790w 692w,607m	855vw,790w 691w,646m,	785w,685w,b 606w,sh	850vw,788m 690w,644mw	852vw,790m 692w,642mw	$+\delta_{\rm CH}$
				567w,560w	sh,566m	560w	606mw,568ms	610m,565m,b ⁷	
	916mw	920vvw	931mw	922mw	930vvw	930mw	923vvw	925vvw	$v_1(ClO_4)$
	648m,632m 626m	620ms	644m,620m	641m,629m 620m	623ms	642m,619m	621s	626ms	v4(ClO4)
545m,520m	530w,450vw	522w,470vw	523w,445vw	522w,452vw	524w,470vw	522w,448vw	520w,470vw	525w,467vw	
450w,sh	372w,350w	455vw,368m	367w,340w	367w,342w	453vw,370m	369w,342w	445vw,371ms	450vw,369w	$v_{\text{Ligand}}(560-$
38/w,302w 345w,b,241w 231w,211w	30/vw,240w, b,214w	340m,300w 213w	M117,WC26	304vw,24uw b,215w	weve,meec 237w,b 212w	W612,W126	32m,304w 215w	217w	Z00 CHI -]
	475w		470w,b	472w,b		470w,b			$v_2(CIO_4)$
		408mw	411mw			420mw	423mw	404mw	v _{м-o} (aqua)
	337w		303w	333w		306w			v _{M-0} (OClO ₃)
	287w	245w,233w	246w,231w	284w	273w,252w	253w,237w	257w,240w	241w,227w	V _{M-N}

Relevant IR spectral data for the new hypoxanthine metal complexes (cm $^{-1}$).

Downloaded At: 18:48TA3BTeEuATY 2011

l

^a Free hxH band assignments based on refs. 16, 17 and 27-29.

300

Complex	λ_{max} , nm^{a}	$\mu_{eff}, B.M.$
Cr(hx)(hxH) ₃ (ClO ₄) ₂	200vvs, 233vs,sh, 255vs, 267vs, 309s,sh, 330s, 433ms, 455ms, 535m,b, 573m, 610m	3.81
Mn(hx)(hxH) ₃ ClO ₄ ·H ₂ O	198vvs, 229vs,sh, 254vs, 266vs, 312s,sh, 334s, 454m,vb	5.94
$Fe(hx)(hxH)_2ClO_4 H_2O$	199vvs, 236vs,sh, 258vs, 268vs, 309s,sh, 332s, 440ms,b, 730mw,b, 915mw,b	5.14
Fe(hx)(hxH) ₃ (ClO ₄) ₂	202vvs, 231vs,sh, 253vs, 266vs, 307s,sh, 329s, 440m,sh, 552mw,b	6.08
Co(hx)(hxH) ₃ ClO ₄	201vvs, 234vs,sh, 252vs, 264vs, 309s,sh, 332s, 437ms, 464ms, 500ms, 535ms, 582ms, 617m, 771m,b, 890w,b, 1010w,b, 1900vw,b	4.56
Ni(hx)(hxH) ₂ ClO ₄ ·H ₂ O	202vvs. 233vs,sh. 257vs. 265vs, 308s,sh. 334s, 432ms,sh. 450ms, 600mw, 640mw, 728w, 960w, 1020w,b	3.11
Cu(hx)(hxH) ₃ ClO ₄ ·H ₂ O	197vvs, 232vs,sh, 256vs, 263vs, 311s,sh, 552s, 590ms,b, 765m,vb	1.92
$Zn(hx)(hxH)_{3}ClO_{4}\cdot H_{2}O$	200vvs, 230s,sh, 259vs, 271vs, 310s,sh, 337s	Diamagnetic

7): 249 ud) uxu (ing c), Ś Nu survey aver S, 200VS,SII, 340S,SIL ŝ ov spectrum of free fix (1/ujol mull), n (4.02); hx⁻ (pH 10–11): 258 (4.05). through ring nitrogens.^{11,14,16,17,24-29} The v_{OH} and δ_{HOH} modes of the aqua ligands appear at 3410-3380 and 1640-1635 cm⁻¹, respectively, in the spectra of the monohydrate metal complexes.³⁰ The ClO₄⁻ group is ionic in four of the M²⁺ complexes (M = Mn, Co, Cu, Zn), as shown by the single v_3 and v_4 and IR-inactive v_1 and $v_2(ClO_4)^{31,32}$ bands. In the remaining M^{2+} complexes (M = Fe, Ni), v_3 and v_4 are split into doublets and v_1 and $v_2(ClO_4)$ are IR-active, indicating the exclusive presence of terminal unidentate $-OClO_3$ ligands.^{31,32} The spectra of the two M³⁺ complexes (M = Cr, Fe) are characterized by triply split v_3 and v_4 (ClO₄) bands (and IR-active v_1, v_2). This is interpreted in terms of the simultaneous presence of $-OClO_3$ ligands and ionic $ClO_4^{-.31,32}$ Tentative $v_{M-Ligand}$ band assignments, based on previous studies of 3d metal complexes with various purines, ^{14,15,19,20,33,34} perchlorato^{14,15,19,20,33,35} and aqua^{14,15,30,33,34} ligands, favour coordination number five for $M = Co^{2 + 14,19,20,34}$ six for the and rest of the new complexes. 14, 15, 19, 20, 30, 33 - 35

Electronic Spectra and Magnetic Moments

The ambient temperature magnetic moments of the new complexes are generally normal for high-spin $3d^3-3d^8$ compounds or the $3d^9$ configuration (Table III).³⁶ The μ_{eff} value for the Co²⁺ complex (4.56 B.M.) is within the range of values corresponding to pentacoordinated cobaltous compounds.³⁷ The normal room temperature magnetic moments observed do not exclude linear chainlike polymeric structures with single hx⁻ bridging ligands between adjacent metal ions (*vide infra*) for the new complexes. In fact, a number of [M(puH)₂(OH₂)₃](ClO₄)₂ linear polymeric complexes (M = Co, Ni, Cu), characterized by a +M-puH $+_x$ backbone, were found to exhibit normal ambient temperature magnetic moments and evidence favouring magnetic exchange interactions only at temperatures below 110° K.³³ Moreover, analogous magnetic behaviour was reported for several single-bridged Cu²⁺ polymeric complexes with a variety of diazine or diazole bridging ligands (Cu-Cu separations > 6.5 Å).^{38,39}

The $\pi \to \pi^*$ transition bands of hxH at 247–249 and hx⁻ at 258 nm⁴⁰ appear shifted toward lower energies (*i.e.*, at 252–259 and 263–271 nm, respectively) in the spectra of the new complexes,^{14–17} which also show the n $\to \pi^*$ transition of the ligand at 307–312 nm⁴¹ (Table III). The paramagnetic complexes exhibit strong metal-to-ligand charge-transfer absorption originating in the UV and trailing off into the visible region.⁴² The d–d transition spectrum of the Co²⁺ complex is characterized by several maxima at 437–1900 nm and is typical of pentacoordinated high-spin cobaltous compounds.^{19,20,34,43,44} The d–d spectra of the Cr³⁺, Fe²⁺, Ni²⁺ and Cu²⁺ complexes are suggestive of low symmetry hexacoordinated configurations, *viz*, nm: M = Cr³⁺ ⁴A_{2g}(F) \to ⁴T_{1g}(F) 433, 455; \to ⁴T_{2g}(F) 535, 573, 610 (Dq = 1746 cm⁻¹); Fe^{2+ 5}T_{2g} \to ⁵E_g 730, 915 (Dq = 1216 cm⁻¹); Ni^{2+ 3}A_{2g}(F) \to ³T_{1g}(P) 432, 450; \to ³T_{1g}(F) 600, 648, 728; \to ¹E_g(D) 960; \to ³T_{2g}(F) 1020 (Dq = 980 cm⁻¹); Cu^{2+ 2}E_g \to ²T_{2g} 552, 590, 765.^{14,15,19,20,33,34,44} The approximate Dq values calculated for the Cr³⁺, Fe²⁺ and Ni²⁺ complexes are compatible with CrN₅O and MN₄O₂ (M = Fe, Ni) chromophores.^{14,33} The Co²⁺ and Cu²⁺ complexes presumably involve CoN₅ and CuN₅O absorbing species, respectively (*vide infra*).

Likely Structures and Hypoxanthine Binding Sites

The overall evidence presented, combined with the insolubility of the new complexes

in organic media and the pronounced tendency of purines to function as bidentate bridging ligands,^{2,11,14,15,33,34} favours linear chainlike single-bridged polymeric structures with a +M-hx backbone and terminal unidentate hxH and, wherever applicable, $-OCIO_3$ and aqua ligands. Structural types analogous to those proposed for the complexes of xnH with 3d metal perchlorates, which also involved 3:1 or 4:1 xanthine to metal molar ratios,¹⁵ are most probable for the complexes herein reported. The new Co²⁺ complex is most probably of type II, with bridging hx⁻, three terminal hxH ligands, and ionic ClO₄⁻. Coordination number five is supported by the spectral and magnetic evidence, as well as the highly hygroscopic nature of this compound (Table I), which is due to its tendency to form the hexacoordinated monohydrate.¹⁹ The remaining new complexes contain *O*-ligands in addition to the *N*-bound hypoxanthine ligands. Probable structural types are III for $M = Mn^{2+}$, Cu^{2+} , Zn^{2+} with one aqua ligand and ionic ClO_4^{-} , IV for $M = Fe^{2+}$, Ni²⁺ with aqua and perchlorato ligands, and V for $M = Cr^{3+}$, Fe^{3+} with both ionic and coordinated perchlorate.

Π

III

The ring nitrogens that are protonated in free neutral hxH are N1,N7 or N1,N9^{40,45,46} (the latter tautomer is shown in I). IR evidence appearing to favour the N1,N7-diprotonated tautomer has been presented,⁴⁰ and is further supported by the reported crystal structures of Co^{2+} ,¹¹ Ni²⁺¹² and Ru³⁺¹³ adducts with N7-bound hxH (terminal unidentate purines usually bind to metal ions *via* the imidazole nitrogen which is protonated in the free base²). It should be mentioned, however, that the existence of linkage isomers of the [Ru(hxH)(NH₃)₅]Cl₃·xH₂O complex with either N7- or N9-bound hxH has been demonstrated^{13,47} and may be commensurate with a tautomeric equilibrium whereby N7 or N9 acts as acceptor of the most acidic proton of hxH. Furthermore, complexes with N7- (M = Cd²⁺)⁴⁸ or N9-(M = Zn²⁺, Hg²⁺)^{49,50} bound terminal 8-azahypoxanthine were also reported.

Nevertheless, the fact that the crystal structures available for 3d metal complexes $(M = Co^{2+}, Ni^{2+})$ with terminal hxH show this ligand binding *via* N7,^{11,12} clearly favours N7-bound hxH for the new complexes. As regards the binding sites of bridging bidentate hx⁻ in these complexes, the N3,N7 combination is most likely. In fact, bridging hxH is, as already mentioned, N3,N7-bound in the single-bridged Cu(hxH)SO₄·H₂O linear polynuclear complexes. It is also probable that the Cu(hx)-ClO₄·4EtOH complex we reported earlier¹⁴ involves N3,N7-bound bridging hx⁻ ligand. It should be noted that the only other type of binding established for bidentate bridging hypoxanthine is *via* N3,N9, which appears to apply in complexes with multiple ligand bridges between adjacent metal ions, as, for instance, [ClCu(hxH)₄CuCl]Cl₂·6H₂O.⁸

Finally, it is worth noticing that, whereas hxH metal complexes prepared from aqueous media involve relatively low ligand to metal ion molar ratios (1:1 or 2:1) $^{6-9.11-13,25,26}$, the corresponding complexes obtained from the non-aqueous eateof medium are characterized by 3:1 or 4:1 hypoxanthine to metal ion ratios. 3:1 or 4:1 complexes of xnH with 3d metal perchlorates were also isolated from ea-teof.¹⁵ On the other hand, Cu(ClO₄)₂ yielded Cu(xn)₂·2EtOH and Cu(hx)ClO₄·4EtOH from EtOH-teof,¹⁴ but xnH formed 3:1 or 4:1 complexes with other 3d metal perchlorates from the latter medium.¹⁵ With other purines, 2:1 or 1:1 complexes with the same metal perchlorates were obtained in these laboratories either from EtOH-teof (puH,³³ adH,⁵¹ guH⁵²) or ea-teof (tpH,¹⁹ tbH²⁰) with the sole exception of a 3:1 adenine complex with ferric perchlorate.⁵¹ Thus it appears that among the biologically most imporant purines only hxH and xnH have the tendency to yield 3d metal perchlorate complexes with relatively high ligand to metal molar ratios from non-aqueous media and especially ea-teof.

REFERENCES

- C.M. Mikulski, M.K. Kurlan, M.L. Bayne, M. Gaul and N.M. Karayannis, Abstr., XXV ICCC, Nanjing, China, July 26–31, 1987; No. D3 693.
- 2. D.J. Hodgson, Progr. Inorg. Chem., 23, 211 (1977).
- 3. J.K. Barton and S.J. Lippard, in "Nucleic Acid-Metal Interactions", T.G. Spiro, Ed. (Wiley, New York, 1980) p. 31.
- 4. E.I. Stiefel, Progr. Inorg. Chem., 22, 1 (1977).
- M.J. Bradford and V. Hrehorovich, Am. J. Med., 46, 137 (1969); P.A. Dieppe and J. Shah, Progr. Cryst. Growth Charact., 3, 17 (1980).
- 6. R. Weiss and H. Venner, Hoppe Seyler's Z. physiol Chem., 340, 138 (1965).
- 7. H. Reinert and R. Weiss, Hoppe Seyler's Z. physiol Chem., 350, 1310 (1969).
- 8. E. Sletten, Acta Cryst., B26, 1609 (1970).
- 9. E. Dubler, private communication.
- 10. E. Dubler, G.B. Jameson and Z. Kopajtić, J. Inorg. Biochem., 26, 1 (1986).
- 11. E. Dubler, G. Hänggi and W. Bensch, J. Inorg. Biochem., 29, 269 (1987).
- 12. E. Dubler, G. Hänggi and H. Schmalle, Acta Cryst., C43, 1872 (1987).
- M.E. Kastner, K.F. Coffey, M.J. Clarke, S.E. Edmonds and K. Eriks, J. Am. Chem. Soc., 103, 5747 (1981).
- 14. C.M. Mikulski, T.B. Tran, L. Mattucci and N.M. Karayannis, Inorg. Chim. Acta, 78, 211 (1983).
- 15. C.M. Mikulski, M.K. Kurlan, M. Bayne, M. Gaul and N.M. Karayannis, *Inorg. Chim. Acta*, **123**, 27 (1986).
- 16. C.M. Mikulski, S. Grossman, C.J. Lee and N.M. Karayannis, Trans. Met. Chem., 12, 21 (1987).
- 17. C.M. Mikulski, S. Grossman and N.M. Karayannis, J. Less-Common Met., 136, 41 (1987).
- C.M. Mikulski, M.K. Kurlan, C.J. Lee, M. Bayne, M. Gaul and N.M. Karayannis, *Inorg. Chim.* Acta, 108, L15 (1985).

- C.M. Mikulski, M.K. Kurlan, S. Grossman, M. Bayne, M. Gaul and N.M. Karayannis, J. Coord. Chem., 15, 347 (1987).
- C.M. Mikulski, M.K. Kurlan, M. Bayne, M. Gaul and N.M. Karayannis, J. Coord, Chem., 17, 267 (1988).
- N.M. Karayannis, L.L. Pytlewski and M.M. Labes, *Inorg. Chim. Acta*, 3, 415 (1969); N.M. Karayannis, C.M. Mikulski, M.J. Strocko, L.L. Pytlewski and M.M. Labes, *Inorg. Chim. Acta*, 8, 91 (1974).
- 22. E.R. Blout and M. Fields, J. Am. Chem. Soc., 72, 459 (1950).
- 23. C.P. Beetz, Jr. and G. Ascarelli, Spectrochim. Acta, 36A, 299 (1980).
- W. Beck and N. Kottmair, Ber., 109, 970 (1976); M.M. Singh, Y. Rosopulos and W. Beck, Ber., 116, 1364 (1983).
- P. Piperaki, N. Katsaros and D. Katakis, *Inorg. Chim. Acta*, 67, 32 (1982); D. Mulet, A.M. Calafat, J.J. Fiol, A. Terrón and V. Moreno, *Inorg. Chim. Acta*, 138, 197 (1987).
- A.I. Stetsenko, O.M. Adamov, E.S. Dmitriyeva and M.V. Muratova, Koord. Khim., 13, 377 (1987);
 L. Perelló, J. Borrás, L. Soto, F.J. Gordo and J.C. Gordo, Monatsh. Chem., 115, 1377 (1984).
- 27. H.A. Tajmir-Riahi and T. Theophanides, Can. J. Chem., 62, 1429 (1984); 63, 2065 (1985).
- 28. F. Allaire and A.L. Beauchamp, Can. J. Chem., 62, 2249 (1984).
- 29. S. Shirotake and T. Sakaguchi, Chem. Pharm. Bull., 26, 2941 (1978).
- 30. I. Nakagawa and T. Shimanouchi, Spectrochim. Acta, 20, 429 (1964).
- B.J. Hathaway and A.E. Underhill, J. Chem. Soc., 3091 (1961); B.J. Hathaway, D.G. Holah and M. Hudson, J. Chem. Soc., 4586 (1963).
- A.E. Wickenden and R.A. Krause, *Inorg. Chem.*, 4, 404 (1965); S.F. Pavkovic and D.W. Meek, *Inorg. Chem.*, 4, 1091 (1965); M.E. Farago, J.M. James and V.C.G. Trew, *J. Chem. Soc.*, A, 820 (1967).
- A.N. Speca, C.M. Mikulski, F.J. Iaconianni, L.L. Pytlewski and N.M. Karayannis, *Inorg. Chem.*, 19, 3491 (1980).
- 34. A.N. Speca, C.M. Mikulski, F.J. Iaconianni, L.L. Pytlewski and N.M. Karayannis, *Inorg. Chim.* Acta, 46, 235 (1980).
- 35. J.R. Ferraro and A. Walker, J. Chem. Phys., 42, 1273, 1278 (1965).
- 36. B.N. Figgis and J. Lewis, Progr. in Inorg. Chem., 6, 37 (1964).
- 37. L. Sacconi, J. Chem. Soc., A, 248 (1970).
- G.W. Inman, Jr. and W.E. Hatfield, *Inorg. Chem.*, **11**, 3085 (1972); H.W. Richardson, W.E. Hatfield, H.J. Stoklosa and J.R. Wasson, *Inorg. Chem.*, **12**, 2051 (1973); D.B. Brown, J.R. Wasson, J.W. Hall and W.E. Hatfield, *Inorg. Chem.*, **16**, 2526 (1977).
- 39. M. Inoue and M. Kubo, Coord. Chem. Rev., 21, 1 (1976); J. Coord. Chem., 6, 157 (1977).
- 40. D.J. Brown and S.F. Mason, J. Chem. Soc., 682 (1957); S.F. Mason, J. Chem. Soc., 2071 (1954).
- L.B. Clark and I. Tinoco, Jr., J. Am. Chem. Soc., 87, 11 (1965); L.B. Clark, J. Am. Chem. Soc., 99, 3934 (1977).
- A.B.P. Lever, J. Lewis and R.S. Nyholm, J. Chem. Soc., 1235 (1962); 3156, 5042 (1963); 1187, 4761 (1964).
- I. Bertini, P. Dapporto, D. Gatteschi and A. Scozzafava, *Inorg. Chem.*, 14, 1639 (1975); M. Ciampolini and N. Nardi, *Inorg. Chem.*, 5, 41, 1150 (1966).
- 44. W. Byers, A.B.P. Lever and R.V. Parish, Inorg. Chem., 7, 1835 (1968).
- 45. D. Lichtenberg, F. Bergmann and Z. Neiman, J. Chem. Soc., (C), 1676 (1971).
- 46. Li-Ming Twanmoh, H.B. Wood, Jr. and J.S. Driscoll, J. Het. Chem., 10, 187 (1973).
- 47. M.J. Clarke, Inorg. Chem., 16, 738 (1977).
- 48. L.G. Purnell, E. Dixon Estes and D.J. Hodgson, J. Am. Chem. Soc., 98, 740 (1976).
- 49. B.J. Graves and D.J. Hodgson, Inorg. Chem., 20, 2223 (1981).
- 50. W.S. Sheldrick and P. Bell, Z. Naturforsch., 41b, 1117 (1986).
- 51. A.N. Speca, C.M. Mikulski, F.J. Iaconianni, L.L. Pytlewski and N.M. Karayannis, J. Inorg. Nucl. Chem., 43, 2771 (1981).
- 52. C.M. Mikulski, L. Mattucci, Y. Smith, T.B. Tran and N.M. Karayannis, *Inorg. Chim. Acta*, 80, 127 (1983).